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Abstract
Bayesian structural equation modeling (BSEM) was used to investi-

gate the latent structure of the Differential Ability Scales—Second

Edition core battery using the standardization sample normative

data for ages 7–17. Results revealed plausibility of a three-factor

model, consistent with publisher theory, expressed as either a

higher-order (HO) or a bifactor (BF) model. The results also revealed

an alternative structure with the best model fit, a two-factor BF

model with Matrices (MA) and Sequential and Quantitative Reason-

ing (SQ) loading on g only with no respective group factor loading.

This was only the second study to use BSEM to investigate the

structure of a commercial ability test and the first to use a large

normative sample and the specification of both approximate zero

cross-loadings and correlated residual terms. It is believed that the

results produced from the current study will advance the field's

understanding of not only the factor structure of the DAS-II core

battery but also the potential utility of BSEM in psychometric

investigations of intelligence test structures.
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The Differential Ability Scales—Second Edition (DAS–II; Elliott, 2007a) is an individually administered test of cogni-

tive ability for children and adolescents ages 2–17 years. The DAS–II is divided into three levels: Lower Early Years

(ages 2:6 through 3:5), Upper Early Years (3:6 through 6:11), and School Age (7:0 through 7:11). At school age, the

DAS-II contains six core subtests that yield three first-order composite scores referred to as cluster scores (Verbal

Ability, Nonverbal Reasoning Ability, and Spatial Ability) as well as a full-scale General Conceptual Ability (GCA) score

thought to reflect psychometric g (Spearman, 1927). Therearealso10diagnostic subtests that contribute themeasure-

ment of two additional cluster scores (Working Memory and Processing Speed). These cluster scores can be used by
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examiners to supplement the core battery. However, none of these supplementalmeasures contribute to themeasure-

ment of theGCAor the threeprimary clusters, nor can theybeexchanged for anyof the corebatterymeasures. It is also

noted that the Early Years battery features different core and diagnostic subtest configurations and not all school-age

clusters are available.1 According to the Introductory and Technical Handbook (Elliott, 2007b; hereafter referred to as

the “Technical Handbook”), this is the result of being unable tomeasure certain constructs well (e.g., Processing Speed,

WorkingMemory) at younger ages.

1.1 Factor structure of the DAS–II

To validate the DAS–II at school age, the test publisher relied exclusively on confirmatory factor analysis (CFA) using

maximum-likelihood (ML) estimation to appraise the six subtest core battery and structure for normative participants

ages 7–17.2 Four oblique (correlated) factors models ranging from one to three factors (one model was a variant of

the two-factor model with cross-loading permitted) were specified and evaluated for adequacy. Fit statistics reported

in the Technical Handbook indicate that a three-factor model consistent with publisher theory fit the standardization

sample data well though the factor loadings for this model were not presented.

Similar analyses were also conducted to evaluate different configurations of the core and diagnostic measures at

school age. For these analyses, the normative sample was split into two groups (6:0–12:11 and 6:0–17:11) with a 14

subtest configuration used at ages 6–12 and a 12 subtest configuration used at ages 6–17. Although a seven-factor

model was retained for ages 6–12, it was suggested that a six-factor model best fit the normative data for ages 6–

17. The Technical Handbook indicates that both structural models are likely consistent with the Cattell–Horn–Carroll

theoryof cognitive abilities (CHC;Schneider&McGrew,2012); however, several first-order factorswere specified (e.g.,

Auditory Processing, Visual–Verbal Memory, and Verbal Short-TermMemory) that were not available for scoring and

interpretation in the actual DAS-II. In addition, the Auditory Processing and Visual–VerbalMemory factors in the final

validationmodels for ages 6–17were each produced froma single indicator reflecting factors that are underidentified.

Although the inclusion of singlet variables is possible in CFA, they should not be interpreted as latent factors because

they do not contain any shared common variance (Brown, 2015).

Since its publication, independent factor analytic investigations of the DAS–II structure have been scarce. In one of

the two studies that could be located, Keith, Low, Reynolds, Patel, and Ridley (2010) used CFA to investigate the age

invariance of the DAS–II full test battery (20 subtests). Themeasurement model was derived from the normative data

from participants ages 5–8. As previously mentioned, this is the only age bracket at which the Early Years and School-

Age batteries are co-normed. Rival models were evaluated, containing different mixtures of correlated errors (n= 10),

cross-loadings (n = 10), and additional post-hoc modifications with a separate validation sample (n = 5). Despite these

modifications, the fit statistics formanyof themodelswere indistinguishable.Nevertheless, ameasurementmodelwas

selected and tested. Keith et al. (2010) explained that the subtests not administered in other age groups were treated

as latent variables using the reference variable approach suggested by McArdle (1994). As described by Keith et al.

(2010), “Thismethod allows the researcher to keep the full model as the comparisonmodel” (p. 688). In this procedure,

subtests that are not administered at an age level are treated as latent variables, while constraining their parameters

and loadings to be equal to the values obtained for the age group atwhich they are administered (ages 5–8). Ultimately,

a six-factor, CHC-based, higher-order (HO) model (Crystallized Ability, Fluid Reasoning, Visual Processing, Long-Term

Retrieval, Short-Term Memory, and Processing Speed) was found to be invariant across the instrument. It should be

noted that the final validation model for ages 4–17 required the specification of additional parameters, including cor-

related residual terms not only for subtests (e.g., Copying and Recall of Designs), but also group factors (Visual Pro-

cessing [Spatial Ability] and Fluid Reasoning [Nonverbal Reasoning]). The analysis also incorporated a theoretically

inconsistent cross-loading (i.e., Verbal Comprehension was found to load on Crystallized Ability and Fluid Reasoning).

1 Several Early Years measures have restricted age bands that preclude them from being administered at school age. However, both batteries are co-normed

at ages 5:0 through 8:11, permitting “out of level” testing for examinees in that age bracket.

2 It appears additional exploratory analyses were conducted by the project team (see p. 157, Elliot, 2007b); however, description and results of these proce-

dures are not presented in the Technical Handbook.
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Given these departures from desired simple structure and the incorporation of out-of-range measures across the age

span, the practical implications of these findings are unclear.

Considering that the models produced from the core battery CFA analyses were not presented in the Technical

Handbook, users of the DAS–II electing to administer and interpret the core battery may be tempted to extrapolate

from the CFA analyses from the full DAS–II battery. However, results furnished by a recent exploratory factor analytic

(EFA) of the DAS–II core battery structure suggest this practice may be problematic. Canivez and McGill (2016) used

principal axis factoring with promax rotation followed by the Schmid–Leiman Orthogonalization (Schmid & Leiman,

1957) to disclose an approximate exploratory bifactor (BF) structure of the DAS–II core battery. Whereas empirical

extraction criteria suggested that DAS–II was a one-factor test, a forced three-factor extraction produced subtest

alignment consistent with that proposed within the Technical Handbook. Nevertheless, the variance accounted for by

the three group factors (Verbal, Nonverbal, and Spatial) was consistently small suggesting the DAS–II may be overfac-

tored (Frazier&Youngstrom, 2007). Specifically, once variancewas apportioned tohigher- and lower-order constructs,

as recommended by Carroll (1993, 1995), most of the variance in the DAS–II subtests was sourced to g, rendering the

Nonverbal factor ill-defined (i.e., contained less than two salient subtest loadings).

Historically, two basic factor analytic techniques have been used to evaluate the internal structure of intelligence

tests: EFA and CFA. Although EFA and CFA have been used to provide insight on the DAS–II structure, the results of

these investigations have not clarified what the DAS–II core battery measures. Whereas EFA results suggest that the

core battery may be overfactored and mostly reflects general intelligence, CFA investigations using various combina-

tions of the core anddiagnostic subtests haveprovidedevidence to support the three group factors posited for the core

batterymodel. The invariance results producedbyKeith et al. (2010) suggest that the relationships amongDAS–II vari-

ables may be more complex than the simple structure portrayed in the CFAs reported in the Technical Handbook (i.e.,

no cross-loading or correlated residuals). Gorsuch (1983) andothers (Carroll, 1985;Horn, 1989) suggest thatwhendif-

ferent methods of factor analysis converge upon the same solution then greater confidencemay be engendered in the

instrument's factor structure. These discrepant results suggest that additional analyses of the DAS–II factor structure

may beworthwhile.

It isworthpointingout that thereare importantdifferencesbetweenEFAandCFA.EFAmodels areweakly specified.

CFAmodels are more flexible, requiring the researcher to specify all relevant aspects of the model a priori. Within the

factor analytic literature, it is frequently suggested that EFA is preferredwhen the relationship among variables is less

understood and CFA is a better method for formal model testing.3 Nevertheless, both methods have limitations. EFA

procedures can underestimate the number of factors andmay produce solutions that oversimplify data (Mulaik, 2010).

CFA may be able to detect previously omitted variance; however, as models become more complex as the researcher

adjusts themodel there is a threat of capitalizing on chance and retaining amodel thatmaynot generalize to other sam-

ples (MacCallum, Roznowski, &Necowitz, 1992). As a result, “researchers are often leftwith the dilemmaofwhether to

keep meaningful alternatives untested or to risk overfitting their model to the data” (Golay, Reverte, Rossier, Favez, &

Lecerf, 2013, p. 498). Horn (1989) also recognized an additional limitation ofCFAmethodology as it relates to cognitive

ability.

At the present juncture of history in the study of human abilities, it is probably overly idealistic to expect to fit

confirmatory models to data that well represent the complexities of human cognitive functioning: too much is

unknown. Even when we can, a priori, specify a multiple-variable model that fits data in a general way—with

chi-square three or four times as large as the number of degrees of freedom (df)—we cannot anticipate all the

small loadings that must be in a model for a particular sampling of variables and subjects if the model is to “truly

fit data” (p. 39). Horn continued, “The statistical demands of structure equation theory are stringent. If there is

tinkering with results to get a model to fit, the statistical theory, and thus the basis for strong inference, goes out

the window (p. 39).

3 In practice, the line between EFA and CFA is less clear. For instance, one can use EFA in a confirmatory context and CFA in an exploratory fashion. Thus, it is

better to think of EFA and CFAmore generally as techniques for conducting factor analysis.Whether an approach is exploratory or confirmatory depends on its

application.
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Horn (1989) also explained that when there is excessive model tinkering then “… one should not give any greater

credence to results from modeling analyses than one can give to results from comparably executed factor analytic

studies of the older variety”(e.g., EFA) (p. 40). Bayesian structural equationmodeling (BSEM) represents amethodolog-

ical procedure that can provide a useful, and perhaps even elegant, solution for researchers faced with the dilemma of

considerable post hoc model adjusting—what Horn described as “tinkering”—by permitting the specification of small-

variance cross-loadings (and correlated residuals) that comeclose to zerobut are not fixed at zero. Thismethodological

procedure attempts to incorporate aspects of both EFA and CFA and may well overcome limitations of both method-

ologies.

1.2 Bayesian structural equationmodeling

BSEM is based upon Bayes’ theorem, amathematical proof created by Thomas Bayes, an 18th century theologian, that

has been recently rediscovered by applied measurement researchers following the arrival of microcomputers with

sufficient processing capabilities, the creation of statistical software capable of performing complex Bayesian model-

ing, and greater confidence in Bayesian estimation that challengesmany assumptions of traditional Gaussian statistics

(Brown, 2015; Kaplan &Depaoli, 2013). One of themost famous—but until recently, secret—uses of Bayesianmethod-

ology was to decipher the German enigma code during the Second World War (Stone, 2013). However, the applica-

tion of Bayesian methodology to understand applied cognitive measurement issues is in its infancy. To date, within the

fields of psychometrics and intelligence research there has been only one application of Bayesian estimation. Golay

et al. (2013) used the procedure to acquire further insight into the FrenchWISC–IV theoretical structure. Application

of BSEM revealed that a five-factor CHC-based direct hierarchical (BF) model best fit the data produced from a clini-

cal sample (N = 249) of French-speaking Swiss children. However, in their application of BSEM, Golay et al. (2013) did

not include estimation of small variance correlated residuals, potentially important features of the BSEM technology

(Muthén&Asparouhov, 2012). The present study seeks to extend use of BSEM to a differentmeasure of cognitive abil-

ity to help understand its factor structure and apply other aspects of theBSEMmodel not included in previous analyses

(e.g., simultaneous estimation of approximate zero cross-loadings and approximate zero correlated error terms).

BSEM holds promise for the understanding of the latent structure of assessment instruments used within many

fields including psychology, health, business, and education (Muthén&Asparouhov, 2012). It portends to better reflect

substantive theory and overcome some of the limitations of traditional (i.e., termed frequentist) exploratory and con-

firmatory factor analytic procedures (Brown, 2015). One of the major limitations of classical ML CFA estimation is the

need to often apply overly strict constraints to represent hypotheses about latent structure, leading to the rejection

of a tested model and a subsequent series of model modifications that may capitalize on chance (MacCallum et al.,

1992;Marsh et al., 2009). This is noticeable in the requirement to fix cross-loadings to zero and estimate only selected

residual correlations that are specified a priori. Although EFA freely yields cross-loadings, it limits the researcher to a

decision regarding how many factors should be extracted and retained, and hypothesized factor complexity (i.e., how

to best determine simple structure where each subtest score loads on a single factor). With EFA, the assignment of

indicators to particular factors is not necessarily specified a priori by the researcher as it is with CFA; instead, data are

allowed to “speak for themselves” within the factor analytic algorithm assigning the location of major factor loadings

and cross-loadings (Carroll, 1985; Gorsuch, 1983). In some respects BSEM attempts to incorporate aspects of both

exploratory and confirmatory factor analytic methods (Golay et al., 2013).

BSEM has the capacity to specify not only cross-loadings, but also correlated residuals using priors that come close

to, but are not fixed at, zero. Because of this, Bayesian estimation may permit an otherwise nonidentified model to

be identified. The practice of estimating all correlated residuals is currently a topic of debate with some suggesting it

should be avoided (Stromeyer,Miller, Sriramachandramurthy, &DeMartino, 2015) and others contending that it better

clarifies an instrument's structure (Muthén & Asparouhov, 2012). Stromeyer et al. (2015) criticized the use of simulta-

neous estimation of small but informative correlated error terms; however, Asparouhov, Muthén, and Morin (2015)

suggested that Stromeyer et al. (2015) may have misapprehended the approach and provided additional guidelines

for the use of small variance correlated residuals. Asparouhov et al. (2015) concluded that instead of adding statistical
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TABLE 1 Summary ofML CFA, BSEM, and EFA characteristics

Characteristics ML CFA BSEM Traditional EFA

Theory Frequentist Bayes Frequentist

Parameters Constants Variables Constants

Cross-loadings Exact zeros Estimated via informative priors
(zeromean and small variance)

Freely estimated

Major loading Freely estimated Diffuse noninformative priors
(zeromean and infinite
variance)

Freely estimated

Correlated
residuals

Specified requiring a degree of
freedom

Informative priors (zeromean
and small variance)

Not available

Model
modification

Multiple indices with improvement
made one parameter at a time

All parameters freed and
simultaneously estimated. Use
of DIC inMplus and additional
indices (i.e., LOO;WAIC) in
other statistical applications

Typically not used but
some are available

Parameter
estimates

Typically assumed to be normally
distributed (not all cases)

Does not assume a normal
distribution but that has
implications for bias and
variance in resulting estimates

Typically assumed to be
normally distributed
(not in all cases)

Sample size Requires large sample size Sample size less of a concern and
canwork with small sample
sizes.With small sample sizes
the prior dominates, which
decreases variance and
increases bias.With larger
samples sizes the influence on
the posterior is diminished
making estimates similar to
those produced byMLCFA

Requires large sample
size

noise to themodel as Stromeyer et al. (2015) suggested, the use of correlated residuals can be used to improve upon an

understanding of a structural or measurement model. Despite Asparouhov's et al.’s (2015) clarification regarding how

to properly estimate correlated residuals, generalized apprehension about its use remains, notably that its inclusion

may result in models with limited theoretical meaning (Rindskopf, 2012) and cumbersome additional computations

that does little to improve structural clarity (Stromeyer et al., 2015). Whereas the specification of informative, small

variance, cross-loading is generally better accepted, the function of correlated residuals remains an issue that requires

further examination, discussion, and modeling via simulation (e.g., Asparouhov et al., 2015; Brown, 2015; Stromeyer

et al., 2015).

A summaryof the general characteristics of BSEMrelative toMLCFAandEFA is presented in Table 1,whereasmore

specific details regarding Bayesian estimation are provided in the forthcoming section.

1.3 Bayesian estimation

Bayesian analysis uses a distribution known as a prior and views parameters as variables instead of constants (Muthén

&Asparouhov, 2012; Zyphur &Oswald, 2015). The selection of a priormay be predicated upon theory, pilot studies, or

results from EFA studies (Gelman et al., 2004; Stone, 2013). With BSEM, data inform about a parameter and modify a

prior into a posterior that produces a Bayesian estimate (often amedian value). There are three different distributions

associated with Bayesian estimation: the prior, the posterior, and the likelihood (Gelman et al., 2014; Gelman, Meng,

& Stern, 1996). The likelihood is the distribution of data given a parameter value. The posterior reflects a distribution

that lies in between a prior and the likelihood. Within this context, priors can be either diffuse (i.e., noninformative) or

informative. A noninformative prior usually has a normal distribution with a large variance, although it could theoret-

ically also have a uniform distribution. A large variance reflects a high degree of uncertainty in the parameter value.
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When the prior variance is large, the likelihood contributesmore information to the formation of the posterior and the

estimate is closer to theML estimate (Muthen &Asparouhov, 2012).

1.4 Markov chainMonte Carlo (MCMC)

Bayesian estimation utilizes MCMC (Edwards, 2010; Green, 1995; Link & Eaton, 2012) algorithms to iteratively draw

random samples from the posterior distribution of the model parameters. Mplus uses the Gibbs algorithm (Cassella &

George, 1992) to undertakeMCMC sampling.When amodel is run in BSEM one of the first characteristics to observe

is whether the model converges. Convergence of the MCMC algorithm is evaluated by monitoring the potential scale

reduction (PSR) convergence criterion (Gelman&Rubin, 1992; Gelman et al., 2014). The first half of theMCMC chains

is discarded as the burn-in phase, whereas the second half is used to estimate the posterior distribution (Muthén &

Asparouhov, 2012). During the first half it is not uncommon for the PSR to fluctuate before stabilizing in the sec-

ond half of the algorithm. The PSR criterion compares within- and between-chain variation of parameter estimates.

A PSR of <1.10 indicates an acceptable convergence level, whereas a PSR of 1.00 is considered perfect model conver-

gence (Kaplan & Depaoli, 2013). Convergence of theMCMC algorithmmay also be assessed by monitoring the poste-

rior distribution through trace and autocorrelation plots (Muthén &Muthén, 1998–2017). Convergence is considered

attained when there is an absence of rapid up-and-down fluctuations and an absence of trends over time (Kaplan &

Depaoli, 2013). If a model does not converge then it is appropriate to increase the number of iterations (I) first by two

(2I) and then by four (4I,Muthén&Asparouhov, 2012). Oncemodel convergence has been established it is then appro-

priate tomove to an investigation of model fit with the data and consideration of whichmodel might be preferred.

1.5 Model fit and comparison

Posterior predictive checking is used to determine model fit with data. Although researchers have used the poste-

rior predictive P-value (PPp) value as a model comparison tool, it is most appropriately used for checking whether

a particular model suggests that the modeled data are similar to data that are actually observed (Gelman, Meng, &

Stern, 1996). There are additional model comparison tools that may be utilized to compare models. These include

leave-one-out cross-validation (LOO), the widely applicable information criterion (WAIC), and the deviance informa-

tion criterion (DIC; Levy, 2011; Vehtari, Gelman, & Gabry, 2017). LOO and WAIC are generally infrequently utilized

by statisticians and applied researchers because of their additional programming and computational complexity. Cur-

rently, Mplus offers users DIC and Bayesian information criterion (BIC;Muthén &Muthén, 1998–2015). BIC is appro-

priate onlywhen informative priors (i.e., small variance cross-loading or correlated residuals) are not specified (Muthén

& Asparouhov, 2012). LOO and WAIC are available in other statistical applications such as R (R Developmental Core

Team, 2017) but not in Mplus at the present time. This generally leaves one model fit index, DIC, to determine which

model is to be preferred (Muthén & Asparouhov, 2012). With BSEM, however, the need to adjust model parameters

and rely upon multiple modification indices the way they are adjusted in ML CFA tends to be obviated by the simulta-

neous estimation of all cross-loadings and correlated error terms. Finally, because all relationships among indicators

and factors are estimated simultaneously, this may eliminate the need for the comparison of many slightly different

models.

1.6 Posterior predictive checking

The range in values of PPp is from 0 to 1, with a value of .50 considered perfect model fit (Gelman et al., 1996;Muthén

& Asparouhov, 2012). Values of less than .10, or greater than .90, suggest a poor model fit with data. As with P-values

in a frequentist analysis, the sampling distribution of a PPp under a true null hypothesis is uniform between 0 and 1

(Gelman et al., 1996). In practice, PPp seems to have lighter tails under the null than frequentist P-values, but any value

between .10 and .90 is considered almost equally likely under the null. Like a frequentist P-value, it only signals some-

thing is wrong with a model when a PPp estimate is at an extreme tail. In other words, if PPp is less than .10 then the
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model rarely fits the observed data as well as data simulated under that model's parameters; thus, it is to be concluded

that the data are not very consistent with the model. Stated another way, PPp values indicate that model is able to

make predictions that are similar to the observations made about themodel.

1.7 Deviance information criteria

The DIC is the test statistic available in Mplus to compare among models and determine which model is preferred.

Much like frequentist test statistics, the DIC is to be interpreted in the same way as other ML CFA information crite-

rion fit statistics (i.e., AIC and BIC). This suggests that lower values are generally preferred although theoretical con-

vergence is also important to consider.

1.8 Purpose of the current study

The present investigation sought to apply BSEM to the DAS–II standardization sample data to understand better the

core battery factor structure for ages 7–17. The application of BSEM to theDAS–II factor structure presents an oppor-

tunity to compare the procedure across different types of structural models (oblique, HO, BF). The present study will

also serve as a comparative test of BSEM relative to results produced from frequentist exploratory (i.e., Canivez &

McGill, 2016) and confirmatory factor analytic methods (i.e., Technical Handbook, Elliott, 2007b; Keith et al., 2010) for

the measurement instrument. This is also the first BSEM study of a cognitive ability test taking advantage of a large

sample size and the use of correlated residuals; thus, it is believed that the results produced from the current studywill

be instructive for advancing the field's understanding of not only the factor structure of the DAS-II core battery but

also the potential utility of BSEM in psychometric investigations of intelligence test structures.

2 METHOD

2.1 Participants

Participants were drawn from the DAS–II standardization sample and included a total of 2,188 individuals ranging in

age from 7 to 17:11 years. The standardization sample was obtained using stratified proportional sampling across

demographic variables of age, sex, race/ethnicity, parent educational level, and geographic region. Details of demo-

graphic characteristics and close approximation to population characteristics are provided in the Technical Handbook

(Elliott, 2007b).

2.2 Instrument

The DAS–II is an individually administered test of intelligence that includes six core subtests across the 7–17:11 age

range and a mixture of 10 supplemental diagnostic subtests. At this age range the DAS–II core subtests combine to

form a GCA score as well as three primary cognitive clusters at the first-order level, each composed of two subtests.

The clusters include Verbal, Nonverbal, and Spatial. Supplemental diagnostic subtests are also available, which can be

combined to form additional first-order clusters (e.g., working memory, processing speed) but these measures are not

utilized to calculate the HO GCA or the three primary cognitive clusters. As previously noted, the Early Years battery

contains different combinations of core subtests and cluster scores. For the sake of parsimony, the present study is

focused specifically on the core battery at school age as it is at that age that the DAS–II structure is most consistent.

2.3 Procedure and analyses

TheDAS–II standardization sample participant raw data for the six core, age 7–17:11 subtests were obtained from the

test publisher. Bayesian structural equation modeling was used to investigate two- and three-factor (oblique, HO, BF)
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models from the DAS–II, which included a test of the three-factor HO structure furnished in the Technical Handbook.

Additionally, a derivation of a two-factor BF structure was investigated where the two nonverbal subtests (Matrices

[MA] and Sequential and Quantitative Reasoning [SQ]) loaded only on g. This model was tested post hoc and after

observing that the two- and three-BF structures had subtests (MA and SQ) with approximate zero loadings on the

nonverbal group factor.

Mplus 8.0 (Muthén & Muthén, 1998–2017) was used for Bayesian estimation. Three different BSEM procedures

were invoked to test each of the models: (1) an analysis without cross-loadings or correlated residuals; (2) an analysis

where all cross-loading are simultaneously estimated; and (3) and an analysis where all cross-loadings and correlated

residuals are simultaneously estimated.

A prior mean of 0 and variance of .01 was established for cross-loadings. For the cross-loadings this resulted in

a range of −.20 to .20 for the resulting cross-loading estimates. If the model failed to converge then a prior cross-

loading variance of .001 was specified. This reduced the range of the cross-loadings estimates from −.06 to .06. An

Inverse-Wishart prior variance of .01 was selected for specification of residual prior variance (Asparouhov &Muthén,

2010).

ThreeMCMCchainswere utilized and iterationswere established at 150,000with the first 75,000 being discarded

as the burn-in phase. A model was determined to have attained convergence under two conditions: (1) a PSR value

stabilizing on a value less than 1.10; and (2) a satisfactory Kolmogorov–Smirnov distribution (i.e., no discrepant poste-

rior distributions in the different MCMC chains; Muthén & Muthén, 1998–2017). In cases where the model failed to

converge using 150,000 iterations then the number of iterations was increased to 250,000. Generally, it is appropri-

ate to increase iterations (I) by a factor of two (i.e., I, I2, then I4; Muthén &Muthén, 1998–2017) but this is dependent

upon computing power. If the model converged then the next step was to investigate the PPp. As previously noted, a

perfect fit of the model to the data is a PPp of .50 with values <.10 or >.90 considered poor model fit meriting model

rejection. Following acceptablemodel fitwith these data via thePPp, theDICwas referenced as themain index to com-

pare competingmodels. Finally, modelswere examined in relation to theoretical plausibility as guided by the prevailing

literature base.

Omega-hierarchical (𝜔H) and omega-hierarchical subscale (𝜔HS) coefficients (Reise, 2012; Rodriguez et al., 2016)

were estimated asmodel-based reliability estimates of the latent factors (Gignac&Watkins, 2013) for both the BF and

HOmodels. Although omega coefficients have been referred to as model-based reliability estimates, they may also be

conceived of as validity estimates as they present data regarding the plausibility of interpreting general and group fac-

tors (Gustafsson&Aberg-Bengtsson, 2010).Omega coefficients should at aminimumexceed .50, but .75would be pre-

ferred (Reise, 2012; Reise, Bonifay, & Haviland, 2013). Additionally, Hancock and Mueller (2001) suggested use of an

index of construct reliability or replicability (calledH) that reflects the proportion of variability in the construct that is

explainedby its own indicators and furnishes an estimate of the reliability of theunderlying factor.HighH-values (>.80)

suggest awell-defined latent variable that portends to be stable across studies. Rodriquez et al. (2016) indicated that it

is difficult to specify group factors within a single instrument and it should only be donewhenH-values are higher than

.70. Further, whenH-values are large, it might be useful to utilize a weighted composite score instead of unit-weighted

composite score. The percentage of uncontaminated correlations (PUCs) was also referenced. PUC determines the

potential bias associated with forcing multidimensional data into a unidimensional model. When explained common

variance (ECV) and PUC are both greater than .70, then the relative bias will be slight and the common variance might

best be considered unidimensional (Rodriquez et al., 2016).Omega-hierarchical and omega-hierarchical subscale coef-

ficients, PUC, andHwere estimated usingWatkin's (2013)Omegaprogram. To estimate these values in theHOmodels,

the group factors needed to be residualized of general factor variance.

3 RESULTS

Table 2 presents the results of BSEM of the DAS–II investigating the two- and three-factor oblique, HO, and BF mod-

els under three conditions: (1) without small variance priors as identified by the “a” model versions; (2) with small
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variance priors for cross-loadings only, as identified by the “b” model versions; and (3) with small variance priors for

cross-loadings and correlated residuals, as identified by the “c”model versions. A single factor (g) model was also inves-

tigated. When BSEM does not utilize small variance, informative priors for cross-loadings or correlated residuals (i.e.,

all “a” models from Table 2), then themodel is said to be akin to a frequentistML CFA.

All of the models (see Table 2) examined, except for models 1 (single factor), 2a, and 2b (two-factor oblique), and

3a and 3b (two-factor HO), fit these data well according to an examination of the PPp (PPp > .10). When investigating

the PPp, it is further noted that several of the models displayed near perfect fit with these data (.50; see models 2c,

3c, 5c, 6c, and 7c; Table 2). This was most commonly found when both cross-loadings and correlated residuals were

specified (two exceptionswere theBFmodels [i.e., 5b and 8b] inwhich only cross-loadingswere specified). These latter

twomodels failed to converge when correlated residuals were estimated.

Although the PPp value should be used to determine how well the data fit the model, DIC along with theoretical

considerations should be used to compare models and determine which model is preferred (Asparouhov et al., 2015;

Brown, 2015). Improvements in model fit both within (i.e., models “a” to “c”) and between (i.e., 1 through 8) models

was determined by examining the DIC (with models that had a PPp > .10). All models with PPp > .10 demonstrated

a slightly lower DIC when cross-loadings were incorporated, except for models 3b and 5b. In those two cases the “a”

version (that did not incorporate cross-loadings or correlated residuals) was preferred to themodels that incorporated

small variance cross-loadings.

When correlated residuals, alongwith cross-loadings, were incorporated, five of themodels (2c, two-factor oblique;

3c, two-factor HO; 5c, two-factor BF with MA and SQ on g only; 6c, three-factor oblique; 7c three-factor HO) then

demonstrated perfect fit with these data (PPp = .499 or .500). However, the two- and three-factor BF models (4c

and 8c) failed to converge when specifying correlated residuals. Additionally, the three-factor HO (model 7c) demon-

strated a slightly higher DIC when all residuals were correlated. The three remaining models (two oblique [2c]; three

HO [3c]; two BF plus MA and SQ on g only [5c]; and three-factor oblique [6c]) demonstrated a lower DIC, indicative

of improved model fit, when both correlated residuals and cross-loadings were specified. Additionally, examining the

publisher's proposed three-factor HO model versus a three-factor BF model revealed nearly identical DIC when no

cross-loadings (model “a” versions) or when cross-loadings (model “b” versions) were specified. This is consistent with

ML CFA research that suggests that just identified models have nearly identical fit whether a HO or BFmodel is speci-

fied (Brown, 2015; also seeMcGill & Dombrowski, 2017 for an applied example).

3.1 Pattern of subtest loadings

An investigation of the pattern of subtest loadings was informative. Within the two- and three-factor BF models (8b

and 4b) the group nonverbal factor loadings were near zero for all BFmodels (Tables 3 and 4) suggesting that once the

two subtests were residualized of their general factor variance the two subtests had negligible group factor variance.

This finding similarly occurredwhen the “a” model versions without informative cross-loadings or correlated residuals

were included with the BF models, although the “a” model version had lower g loadings for MA and SQ compared to

the “b” model version. Thus, the decision was made to test a derivation of the two-factor BF model where MA and

SQ loaded only on g [two BF plus MA and SQ on g only (model 5 (a–c); Tables 5 and SA1)]. With the exception of the

three oblique factors model (6c; Table SA2), the two BF plus SQ and MA on g only model (model 5c; Table 5) had the

lowest DIC when both cross-loadings and correlated errors were specified. Although the oblique model (Table SA2)

had a lower DIC, it was deemed to be theoretically inferior as tests of cognitive ability are generally presumed to have

a hierarchical latent ability factor, presumably general intelligence (Carroll, 1993; Gorsuch, 1983). An examination of

the three-factor HO model (Table SA3), which included cross-loadings, suggested that all subtests were aligned with

theoretically proposed factors. This did not occur with its three-factor BF counterpart (Table 2) wherein MA and SQ

had approximate zero loadings on the nonverbal group factor once general abilitywas residualized. The two-factorHO

model (Table SA4) with both cross-loadings and correlated residuals produced loadings consistent with theoretically

proposed factors.
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TABLE 3 Three-factor bifactor BSEMwith cross-loadings and small variance (.001) priors

GeneralLoading
Estimates
(Median) g Verbal Nonverbal Spatial

b S2 b S2 b S2 b S2

Subtest [95%CI] [95%CI] [95%CI] [95%CI] h2 u2

Word
definitions

.658
[.621

.433

.694]
.467
[.419

.218

.511]
.000
[−.061

.000

.061]
−.004
[−.056

.000

.047]
.653 .347

Verbal
similarities

.665
[.628

.442

.701]
.467
[.419

.218

.511]
.000
[−.062

.000

.060]
−.002
[−.054

.000

.049]
.662 .338

Matrices .766
[.731

.587

.796]
−.004
[−.055

.000

.045]
−.020
[−.215

.000

.196]
.014
[−.045

.000

.071]
.601 .399

Sequential
andQuan-
titative

.810
[.777

.656

.840]
.017
[−.036

.000

.067]
−.020
[−.215

.000

.197]
−.007
[−.064

.000

.050]
.671 .329

Pattern
construc-
tion

.714
[.681

.510

.748]
−.027
[−.075

.001

.020]
.000
[−.063

.000

.063]
.302
[.222

.091

.363]
.604 .396

Recall of
designs

.639
[.602

.408

.676]
.016
[−.032

.000

.063]
.000
[−.060

.000

.062]
.302
[.223

.091

.363]
.501 .499

.615 .385

ECVa .822 .118 .000 .049 .991a

Total
variance

.506 .073 .000 .030

𝜔H /𝜔HS .835 .263 .000 .118

H .869 .358 .001 .167

PUC .800

Note. b = Standardized loading of subtest on factor; S2 = variance explained in the subtest; h2 = communality; u2 = unique-
ness; ECV = explained common variance; 𝜔H= omega-hierarchical (general factor); 𝜔HS= omega-hierarchical subscale (group
factors); BSEM=Bayesian structural equationmodeling; CI= confidence interval; g= general intelligence.
aDoes not total to 100% due to use of median parameter estimates. Loadings in bold were freely estimated. Other loadings
were estimatedwith small (.001) variance priors.

Examination of variance apportionment alongwith omega statistics,H and PUC—presented at the bottomof Tables

2 through 5 and Tables SA1 through SA4—all converge to suggest that the general factor absorbed a considerable

proportion of both total and common variance across all HOandBFmodels. Across all BF andHOmodels investigated,

the ECV of the general factor ranged from .663 to .823. Individual group ECV ranged from .000 to .218. The general

factor similarly accounted for a considerably higher proportion of total variance ranging from .442 to .508 than did the

group factors. Group factor total variance ranged from .000 to .145.

Omegahierarchical andomegahierarchical subscale coefficients suggested that interpretationof theDAS–II should

reside primarily at the HO or general (GCA) level, whether a BF or HOwas referenced, with omega hierarchical rang-

ing from .711 to .838. Omega hierarchical subscale ranged from .000 to .274, again supporting primary emphasis on

general factor interpretation.When looking at PUC in combinationwith the ECVof the general factor, it is evident that

the DAS–II is dominated by a general factor. Similarly, the highH values (>.80) also suggests a dominant general factor

that portends to be stable across studies. Thus, consistentwith other frequentist EFA andCFA studies (e.g., Bodin, Par-

dini, Burns, & Stevens, 2009; Canivez, 2014; Canivez & McGill, 2016; Canivez, Watkins, & Dombrowski, 2016, 2017;

DiStefano & Dombrowski, 2006; Dombrowski, 2013, 2014a, 2017b; Dombrowski, Watkins, & Brogan, 2009; Dom-

browski, Canivez,&Watkins, 2017;Dombrowski,Canivez,Watkins,&Beaujean, 2015;Dombrowski,McGill, &Canivez,

2017a, 2017b;Watkins & Beaujean, 2014) and consistent with Frazier and Youngstrom (2007), the DAS–II appears to

be an instrument dominated by a general factor.
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TABLE 4 Two-factor bifactor BSEMwith cross-loadings and small variance (.01) priors

General

g Verbal Nonverbal

b S2 b S2 b S2

Subtest [95%CI] [95%CI] [95%CI] h2 u2

Word
definitions

.652
[.613

.425

.691]
.476
[.423

.227

.521]
.000
[−.05

.000

.051]
.652 .348

Verbal
similarities

.659
[.620

.434

.698]
.476
[.423

.227

.521]
.002
[−.048

.000

.053]
.661 .339

Matrices .763
[.730

.582

.799]
.004
[−.056

.000

.059]
.016
[−.107

.000

.152]
.587 .413

Sequential and
Quantitative

.825
[.787

.681

.869]
.007
[−.053

.000

.064]
−.053
[−.242

.003

.207]
.690 .310

Pattern
construction

.715
[.651

.511

.758]
−.021
[−.069

.000

.030]
.225
[−.028

.051

.564]
.572 .428

Recall of designs .646
[.582

.417

.710]
.031
[−.044

.000

.066]
.353
[−.048

.125

.053]
.546 .454

ECVa .823 .122 .048 .993

Total variance .508 .076 .030 .614 .386

𝜔H /𝜔HS .838 .274 .039

H .872 .369 .166

PUC .533

Note. b = Standardized loading of subtest on factor; S2 = variance explained in the subtest; h2 = communality; u2 = unique-
ness; ECV = explained common variance; 𝜔H= omega-hierarchical (general factor); 𝜔HS= omega-hierarchical subscale (group
factors); BSEM=Bayesian structural equationmodeling; CI= confidence interval; g= general intelligence.
aDoes not total to 100% due to use of median parameter estimates. Loadings in bold were freely estimated. Other loadings
were estimatedwith small (.01) variance priors.

4 DISCUSSION

The present study permitted a comparison of BSEM across different types of structural models (oblique, HO, BF). It

also furnished information about possible alternative structures (i.e., twoBF plusMAand SQon g only;Model 5, Tables

5 andSA1) for theDAS–II thatwere not described in theTechnicalHandbooknor observedwithinCanivez andMcGill's

(2016) EFA-SL or Keith et al.’s (2010) studies.

One of the more potentially useful capabilities of BSEM (Asparouhov et al., 2015; Muthén &Muthén, 1998–2017)

is that it permits the simultaneous estimation of cross-loadings and correlated error terms using small variance priors.

This would not be possible on a six subtest instrument, such as the DAS–II, using classical ML CFA estimation. The

attempt to estimate thismanyparameters in frequentist CFAwould simply lead to anunidentifiedmodel.WithMLCFA

most cross-loadings have to be fixed at zero to achievemodel identification andmost error terms remain uncorrelated

for that same reason. But, this may not reflect the researcher's hypothesis or even the structural reality of a cognitive

ability instrument that often has overlapping, highly correlated constructs (Carroll, 1993; Gorsuch, 1983; Horn, 1989).

Unnecessarily strictmodels and inappropriate zero cross-loadings could contribute topoormodel fit, distorted factors,

inflated loadings, andbiased correlations (Asparouhov&Muthén, 2009;Brown, 2015;Marshet al., 2009).McCraeet al.

(2008) recognized this concern within the personality structural validity research literature and posited that ML CFA

was overly restrictive (i.e., independent cluster assumption requiring an indicator to load only one factor and disregard

cross-loadings) leading to correlations among the factors that tend to be overestimated.

BSEM offers the potential of an elegant solution to this problem that accounts for both cross-loadings and corre-

lated residuals through simultaneous estimation. It may also be considered a hybrid estimation procedure in between
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TABLE 5 Two-factor bifactor BSEMMA and SQ on g only with cross-loadings and correlated residuals (.01)

General

g Verbal Nonverbal

b S2 b S2 b S2

Subtest [95%CI] [95%CI] [95%CI] h2 u2

Word
definitions

.607
[.441

.368

.733]
.612
[.464

.375

.703]
.037
[−.144

.001

.209]
.754 .246

Verbal
similarities

.621
[.454

.386

.747]
.612
[.463

.375

.703]
.028
[−.156

.001

.203]
.771 .229

Matrices .839
[.652

.704

.930]
−.029
[−.212

.001

.157]
−.018
[−.200

.000

.161]
.722 .278

Sequential
andQuan-
titative

.866
[.697

.750

.940]
−.012
[−.200

.000

.168]
−.021
[−.209

.003

.161]
.767 .233

Pattern
construc-
tion

.658
[.501

.433

.782]
.037
[−.140

.001

.212]
.550
[−.046

.330

.646]
.748 .252

Recall of
designs

.590
[.395

.348

.740]
.042
[−.144

.002

.217]
.550
[−.046

.330

.647]
.664 .336

ECVa 675 .170 .137 .983

Total
variance

.498 .126 .101 .725 .275

𝜔H /𝜔HS .800 .428 .358

H .887 .545 .464

PUC .800

Note. b = Standardized loading of subtest on factor; S2 = variance explained in the subtest; h2 = communality; u2 = unique-
ness; ECV = explained common variance; 𝜔H= omega-hierarchical (general factor); 𝜔HS= omega-hierarchical subscale (group
factors); BSEM=Bayesian structural equationmodeling; CI= confidence interval;MA=Matrices; SQ= Sequential andQuan-
titative Reasoning; g= general intelligence.
aDoes not total to 100% due to use of median parameter estimates. Loadings in bold were freely estimated. Other loadings
were estimatedwith small (.01) variance priors.

EFA and CFA. It is noted, however, that the specification of all correlated residual terms represents a novel approach

to structural modeling that is not yet fully embraced by the statistical community (Rindskopf, 2012; Stromeyer et al.,

2015). The incorporation of all correlated residuals terms within BSEM deserves further study and debate but has

potential to help clarify more complex elements of an instrument's internal structure (Asparouhov et al., 2015).

Within this study, the inclusion of correlated residuals improvedmodel fit in some cases, (e.g., models 2c, 3c, and 5c)

as determined by PPp values suggesting that themodel nearly perfectly fit these data, and produced lowerDIC scores.

However, therewere also caseswhere incorporation of correlated errors producedmodels that failed to converge (the

two- and three-factor BFmodels, 4c and 8c), failed to yield a lowerDIC (model 7c, three-factorHO), or did not enhance

structural clarity basedon thepatterns of loadings, as the loadingswere essentially the samewhether or not correlated

residuals were incorporated. In those cases, the more parsimonious model (cross-loadings only or no incorporation of

cross-loadings) may be favored. For instance, model (5c; Table 5) produced aDIC that was lower than all models except

model 6c (three-factor oblique model; Table SA2) but it is unknown whether any structural clarity or theoretical gains

could be made by choosing the correlated errors version (Model 5c; Table 5) over its cross-loading only counterpart

(Model 5b; Table SA1).

Also, theoretical considerationsmust be accounted for. Althoughmodel 6c (three-factor oblique) produced the low-

est DIC, and one could indeed offer a statistical defense for an obliquemodel, at present obliquemodels do not reflect

the consensual theoretical conceptualization for measures of cognitive abilities (Carroll, 1993; Dombrowski, 2015;

Gignac, 2016;Gignac&Watkins, 2013). Therefore, obliquemodelswere incorporated for pedagogical reasons because
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BSEM has only been used once before in the professional literature to understand cognitive ability instruments (i.e.,

Golay et al., 2013).

Moving next to an understanding of the three-factor structure posited in the Technical Handbook, the three-factor

HO (cross-loadings only; Table SA3) and the three-factor BF (cross-loadings only; Table 3) models demonstrated a

nearly identical DIC. This is not surprising. As occurs with ML CFA estimation, in BSEM estimation when a just iden-

tified model is investigated, fit indices are virtually identical (Brown, 2015). When correlated residuals where incor-

porated both the two- and three-factor BF models failed to converge. When correlated residuals were specified for

the HO models, the two-factor HO model saw improved model fit, whereas the three-factor HO model evidenced a

reduced model fit as noted by an increase in DIC. In the case of model 5c (two BF plus MA and SQ on g only; Table 5),

the incorporation of correlated residuals improved model fit with these data and lowered DIC. However, the pattern

of subtest loadings was essentially the same as when cross-loadings only approach was specified (Table SA1). Across

all models investigated, parameter estimates for correlated residuals were not statistically significant. This informa-

tion is important in its own right and along with inclusion of cross-loadings (all were nonsignificant) suggested that the

subtests may be statistically homogenous as posited in the Technical Handbook.

The results of this study indicate that theDAS–II six core subtest batterymay be conceptualized not only as a three-

factor HO model, as indicated in the Technical Handbook (although the standardized loadings associated with this

model were not reported), but also as a three-factor BF model. With both models, the incorporation of cross-loadings

improved model fit with these data. However, the incorporation of correlated residuals caused the three-factor BF

model (and two-factor BFmodel) to fail to converge.

In addition to being conceptualized as a three-factor HOmodel (Table SA3) or three-factor BF model (Table 3), the

DAS–II may be conceptualized as a two-factor BF model with two of its subtests (MA and SQ; Tables 5 and SA1) load-

ing on g only. If one ascribes to a BF conceptualization of intelligence, then this hybrid BF model appears plausible:

the three-factor BF model produced loadings–; MA and SQ– close to zero on their theoretically posited group factor.

Whether a two- (Tables 5 and SA1) or three-factor BF (Table 3) model is investigatedMA and SQ load on their respec-

tive group factors at close to zero, but have high general factor loadings. If the choice is for a BFmodel, then the hybrid

approach (i.e., Model 5a–c; Tables 5 and SA1) is viable as having MA and SQ load on g only improves structural clar-

ity. When correlated residuals were included, this model produced the lowest DIC and affirmed a lack of relationship

among the error terms for the DAS–II, a finding that is important in its own right.

Regardless of whether a BF orHOmodel is adopted omega statistics suggest that theDAS–II is an instrument dom-

inated by general ability. This was similarly supported by H and PUC. The finding is also consistent with prior findings

fromCanivez andMcGill (2016) who cautioned aboutmoving beyond interpretation of the general factor even though

they foundevidence for threegroup factors consistentwith that posited in theTechnicalHandbookwhen forceextract-

ing that model in their EFA analyses.

Similar to Golay et al. (2013), the present results suggest the use of BSEM appears to be a viable option for the

investigation of the structure of cognitive ability instruments. With the DAS–II it produced results that appear theo-

retically plausible and in fact offered an alternative structure (two BF plusMA and SQ on g only; Model 5a–c) that was

not describedwithin the Technical Handbook nor describedwithin the extant DAS-II factor analytic research (Canivez

& McGill, 2016; Keith et al., 2010). Within the present study, the inclusion of small variance cross-loadings appeared

to aide in theoretical interpretation of the DAS–II structure. The inclusion of correlated residuals did not necessarily

improve the structural clarity of the model beyond the use of cross-loadings, lowered DIC in some cases, and failed to

permit the model to converge in others. But, it did offer additional insight into the DAS–II structure by demonstrating

that subtests were not confounded by error terms that were correlated and that cross-loadings do not detract from

the core battery's structural clarity as nonewere statistically significant.

Whereas cross-loadings are familiar to the structural validity researcherwho encounters themwhen using EFA, the

use of correlated residualsmaywell require further explication, scrutiny, and debate. Questions remain aboutwhether

its use improves structural clarity, introduces statistical noise, or may be exploited for the sole purpose of improving

model fit. Because of this it is suggested that guidelines be established. However, the specification of correlated resid-

uals may be of benefit. Unlike with ML CFA that permits only the specification of just a few correlated residuals often
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guided by theory, with BSEM the model identification issues are less of a concern and portend to uncover relation-

ships that were not specified. Keep in mind, however, that BSEM is not a panacea for model identification issues, and

is not the only option to the structural validity mountain top. This study demonstrated that BFmodels still experience

identification problems when correlated residuals were specified quite possibility due to the inclusion of additional

parameters that had to be estimated. This study's findings regarding the DAS–II support either a three-factor HO or

three-factor BF structure. This study also lends support for an alternative two-factor BF structure where MA and SQ

load only on the general factor.

Limitations include the need for further research on the use of BSEM. There has only been one prior study using

BSEM for cognitive ability and just a handful investigating psychology, health, and management (De Bondt, Van

Petegem, 2015; Fong & Ho, 2013, 2014; Stromeyer et al., 2015; Zyphur & Oswald, 2015). Although proponents of

BSEMmay claim that BSEM is devoid of statistical fishing expeditions, this may not be entirely true. A researcher still

needs to specify in advance the selection of a prior and avoid the temptation to search for improved model fit just for

its own sake. The results of this study showed that it was indeed possible to simultaneously estimate all cross-loadings

to evaluate the nature of the constructs measured by each subtest scores. Thus BSEMavoided resorting tomany com-

parisons that may capitalize on chance and potentially bias the estimation of the model parameters. The most con-

troversial aspect of BSEM is the use of correlated residuals. There are researchers who raise concerns about their use

(Stromeyer et al., 2015).On the other hand,Muthén andAsparouhov (2012) andAsparouhov et al. (2015) contend that

if used appropriately then the specification of correlated residuals may enhance the understanding of an instrument's

structure. Additional discussion and debate of this topic is necessary.

In totality, the use of BSEM on the six core subtest DAS–II structure offered additional insight into the structure of

the DAS–II not previously uncovered by the use of ML CFAwithin the Technical Handbook nor within the exploratory

and Schmid–Leiman procedures used by Canivez andMcGill (2016). As a result, a follow-up ML CFA study comparing

the various two- and three-factor structures, including the two BF plusMA and SQ on g only, may be worthwhile. Both

Carroll (1993) and Horn (1989), whose work guided the development of CHC theory, a theory that undergirds the

DAS-II, acknowledge that scientific validation requires convergent evidence from different procedures and sources of

data.
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Table A1 
Two Factor Bifactor BSEM with Cross-Loadings and Small Variance (.01) Priors.  
 
 

General     
   g  Verbal   Nonverbal 

Subtest 
b        S2 
[95% CI]  

b        S2 
[95% CI]  

b        S2 
[95% CI]  h2 u2 

Word Definitions 
 

.652    
[.613    

.425  

.691]    
 
 

.476 
[.423 

.227 
 .521] 

 .000 
[-.05 

.000 
.051] 

 .652 .348 

            
Verbal Similarities .659 

[.620 
.434 
.698] 

 .476 
[.423 

.227 
.521] 

 .002 
[-.048 

.000 
.053] 

 .661 .339 

            
Matrices .763 

[.730 
.582 
.799] 

 .004 
[-.056 

.000 
.059] 

 .016 
[-.107 

.000 
.152] 

 .587 .413 

            
Sequential & Quantitative .825 

[.787 
.681 
.869] 

 .007 
[-.053 

.000 
.064] 

 -.053 
[-.242 

.003 
.207] 

 .690 .310 

            
Pattern Construction .715 

[.651 
.511 
.758] 

 -.021 
[-.069 

.000 
.030] 

 .225 
[-.028 

.051 
.564] 

 .572 .428 

            
Recall of Designs .646 

[.582 
.417 
.710] 

 .031 
[-.044 

.000 
.066] 

 .353 
[-.048 

.125 
.053] 

 .546 .454 

            
ECV*  .823   .122   .048  .993  
Total Variance   .508   .076   .030  .614 .386 
 wH / wHS	 	 .838   .274   .039    
H  .872   .369   .166    
PUC  .533          
Note. b = standardized loading of subtest on factor, S2 = variance explained in the subtest, h2 = communality, u2 
= uniqueness, ECV = explained common variance,	wH = Omega-hierarchical (general factor),	wHS = Omega-
hierarchical subscale (group factors). BSEM=Bayesian Structural Equation Modeling, CI=Confidence Interval, 
g = general intelligence. *Does not total to 100% due to use of median parameter estimates. Loadings in bold 
were freely estimated. Other loadings were estimated with small (0.01) variance priors. 	



 

  
Table A2  
Two Factor Bifactor BSEM (MA & SQ on g only) with Cross-Loadings and Small Variance (.01) Priors. 	

 
 

General     
   G  Verbal   Spatial 

Subtest 
b        S2 
[95% CI]  

b        S2 
[95% CI]  

b        S2 
[95% CI]  h2 u2 

Word Definitions 
 

.661    
[.571    

.437   

.723]    
 
 

.469 
[.356 

.220 
 .567] 

 .003 
[-.126 

.000 
.126] 

 .653 .347 

            
Verbal Similarities .654 

[.577 
.428 
.730] 

 .469 
[.356 

.220 
.567] 

 .008 
[-.120 

.000 
.130] 

 .662 .338 

            
Matrices .761 

[.714 
.579 
.821] 

 .003 
[-.130 

.000 
.133] 

 .036 
[-.145 

.001 
.181] 

 .601 .399 

            
Sequential & Quantitative .630 

[.773 
.397 
.901] 

 .005 
[-.143 

.000 
.143] 

 -.025 
[-.210 

.001 
.120] 

 .671 .329 

            
Pattern Construction .708 

[.646 
.501 
.761] 

 -.025 
[-.141 

.001 
.096] 

 .314 
[.182 

.099 
.419] 

 .604 .396 

            
Recall of Designs .630 

[.567 
.397 
.681] 

 .035 
[-.074 

.001 
.150] 

 .314 
[.183 

.099 
.419] 

 .501 .499 

          .615 .385 
ECV*  .742   .120   .054  .915*  
Total Variance   .456   .074   .033    
 wH / wHS	 	 .808   .266   .128 	 	 	
H 	 .839   .361   .179 	 	 	
PUC 	 .800       	 	 	
Note. b = standardized loading of subtest on factor, S2 = variance explained in the subtest, h2 = communality, u2 = 
uniqueness, ECV = explained common variance, wH = Omega-hierarchical (general factor),	wHS = Omega-
hierarchical subscale (group factors). BSEM=Bayesian Structural Equation Modeling, CI=Confidence Interval, 
MA=Matrices, SQ= Sequential & Quantitative Reasoning, g = general intelligence. *Does not total to 100% due 
to use of median parameter estimates. Loadings in bold were freely estimated. Other loadings were estimated 
with small (0.01) variance priors.  
 



Table A3 Three Factor Oblique with Informative Cross Loadings and Correlated Residuals (.001) 

Loading estimates (median) 
      

    Verbal   Nonverbal  Spatial 

Subtest  
b        S2 
[95% CI]  

b        S2 
[95% CI]  

b        S2 
[95% CI]  h2 u2 

Word Definitions 
 

 
 

.878 
[.672 

.771 
 1.103] 

 -.003 
[.637 

.000 
1.102] 

 -.005 
[.614 

.000 
1.092] 

 .766 .234 

             
Verbal Similarities  .863 

[.604 
.745 

1.052] 
 .011 

[.584 
.000 

1.054] 
 .003 

[.493 
.000 

1.025] 
 .763 .237 

             
Matrices  -.008 

[-.199 
.000 
.157] 

 .880 
[-.193 

.774 
.158] 

 -.006 
[-.184 

.000 
.152] 

 .764 .236 

             
Sequential & Quantitative  .018 

[-.167 
.000 
.196] 

 .837 
[-.167 

.701 
.183] 

 .017 
[-.160 

.000 
.163] 

 .748 .252 

             
Pattern Construction  -.004 

[-.201 
.000 
.164] 

 .005 
[-.161 

.000 
.175] 

 .873 
[-.180 

.762 
.166] 

 .771 .229 

             
Recall of Designs  .009 

[-.167 
.000 
.178] 

 .008 
[-.169 

.000 
.181] 

 .791 
[-.150 

.626 
.194] 

 .652 .348 

ECV*   .340   .330   .311  .981  
Total Variance    .253   .246   .231  .730 .270 
             
Factor Intercorrelations             
Verbal  1           
Nonverbal  0.671   1        
Spatial  0.585   .705   1     
             
Note. b = standardized loading of subtest on factor, S2 = variance explained in the subtest, h2 = communality, u2 = 
uniqueness, ECV = explained common variance, CI=Confidence Interval. *Does not total to 100% due to use of median 
parameter estimates. Loadings in bold were freely estimated. Other loadings were estimated with small (0.001) variance 
priors. 

 

  



Table A4 Two factor Higher Order with Cross-loadings and Correlated Residuals (.001)  250K Iterations  

Loading estimates (median) 
General*    Residualized    Residualized     

g  Verbal   Verbal  Nonverbal  Nonverbal     

Subtest 
b        S2 
[95% CI]  

b        S2 
[95% CI]  

b        S2 
  

b        S2 
[95% CI] 

 b        S2 
 

  
h2 u2 

Word Definitions 
 

.723    
 

.523  
    

 
 

.870 
[.740 

.757 
.878]  

 .487 
 

.237  .000 
[-.046 

.000 
.048] 

     .760 .240 

Verbal Similarities .726 
 

.528  .874 
[.742 

.764 
.885] 

 .489 .239  .000 
[-.047 

.000 
.050] 

     .767 .233 

Matrices .648 
 

.420 
 

 .000 
[-.052 

.000 
.038] 

    .804 
[.705 

.646 
.841] 

 .478 .228   .648 .352 

Sequential & Quantitative .662 
 

.438 
 

 .000 
[-.030 

.000 
.062] 

    .821 
[.739 

.674 
.875] 

 .492 .242   .680 .320 

Pattern Construction .623 
 

.388 
 

 .001 
[-.066 

.000 
.022] 

    .773 
[-.048 

.598 
.047] 

 .459 .211   .599 .401 

Recall of Designs .596 
 

.355 
 

 .004 
[-.029 

.000 
.060] 

    .739 
[-.047 

.546 
.049] 

 .437 .191   .546 .454 

                   
ECV  .663      .119      .218   1.00  
Total Variance   .442      .079      .145   .667 .333 
 wH / wHS**  .711      .270      .305     
H  .830      .385      .528     
PUC  .533                 
                   
Second Order Loadings 
(median)           
           
Verbal .831                 
 [.649 .992]                 
Nonverbal .806                 
 [.648 .991]                 
                   

Note. b = standardized loading of subtest on factor, S2 = variance explained in the subtest, h2 = communality, u2 = uniqueness, ECV = explained 
common variance, wH = Omega-hierarchical (general factor), wHS = Omega-hierarchical subscale (group factors), g = general intelligence. Omega 
estimates based on residualized group factor loadings. Loadings in bold were freely estimated. Other loadings were estimated with small (0.001) 
variance priors. Residualized using the following formula: 𝑅" − (𝑔	𝑙𝑜𝑎𝑑𝑖𝑛𝑔)"  *Calculated using the path tracing rules. **Used residualized estimates to 
calculate omega. 

 


